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Abstract

The paper gives an analytical approximation to the viscous damping coefficient due to the motion of a gas between a pair of closely space
fluctuating plates in which one of the plates contains a regular system of circular holes. These types of structures are important parts of mar
microelectromechanical devices realized in MEMS technology as microphones, microaccelerometers, resonators, etc.

The pressure satisfies a Reynolds’ type equation with coefficients accounting for all the important effects: compressibility of the gas, inertia
and possibly slip of the gas on the plates. An analytical expression for the optimum number of circular holes which assure a minimum value
of the total damping coefficient is given. This value realizes an equilibrium between the squeeze-film damping and the viscous resistance c
the holes.

The paper also provides analytical design formulas to be used in the case of regular circular perforated plates.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction rations are compatible with the thin film processing and add
very little to the manufacturing cost.

The study of the motion of a thin fluid layer squeezing While the squeeze-film damping is reduced by incorpo-
between a vibrating plate (or proof mass) and a backplaterating holes in the backplate, the motion of the air within the
electrode (or between the two vibrating plates in other ap- backplate holes gives a new viscous resistance which adds
plications), referred as a planar microstructure, is impor- to the squeeze-film damping. Previous work devoted to the
tant in many microelectromechanical devices such as mi- viscous damping in planar microstructures has considered, in
crophones[1], microaccelerometerf2], micromechanical  many cases, only the squeeze-film damping. TBisor|[7]
switches[3], various resonatorpl], and tunable microop-  using a simplified hydraulic model succeeded in obtaining an
tical interferometer$5]. The motion of the thin film of air ~ analytical formula for evaluating the squeeze-film damping
in a planar microstructure generatesgueeze-film damp-  in some acoustical deviceSkvor’s result is applicable to in-
ing that can adversely affect the dynamic response of the compressible fluids and neglects any added damping due to
system6]. the flow through the holes. The viscous hole resistance effect

The excessive gas damping problem is often solved by was considered by Rog8§l] in some acoustical applications.
“drilling” perforations in one of the plates. In fact, the use Recently, Veijola and Mattil§9] and Bao et al[10] devel-
of perforated plates in surface-micromachined planar mi- oped damping models incorporating the holes resistance in
crostructures has a double role: it reduces the squeeze-filmthe linearized Reynolds equation.
damping effect and enhances the etching of underlying sacri-  These two viscous effects, namely the squeeze-film damp-
ficial layers in the microfabrication process. Thus, the perfo- ing due to the horizontal motion of the air between the plates

and the resistance due to the vertical motion of air through the
m onding author. Permanent address: University Politechnica holes are not independent. In order to decrease the squeeze-
of BucharZSt, De?partment of Mathematics, Splaiul Indepteyndentei #313, film damping W.e havg todrill"more and more.hOIeS buteach
RO-77206 Bucharest, Romania. new hole adds its resistance to the total damping. Thus, we ex-
E-mail addresshomentco@binghamton.edu (R.N. Miles). pect the existence of an optimum number of perforations that
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minimizes the viscous damping and corresponds to an equi- As a byproduct of this calculation a correction term for the
librium between the two components of the viscous damp- Skvor’s analytical formula for the cases40< AR < 0.75

ing. For the case of incompressible fluids such an analysiswas obtained.

was performed ifil1]. In the present study, we extend some For a finite plate the real damping force depends on the
of these results to account for the effects of compressibility, plates’ boundary which is decreasing the pressure. Hence,
inertia, and the gas slip on surfaces. A primary aim of this the damping coefficient resulting by the present analysis is
paper is to present practical formulae that are more widely conservative; for a better approximation of this coefficient,
applicable than previous results and, in electrically driven or corresponding to a particular structure, a more elaborate anal-
sensed devices, have the minimal gas damping for an assumewsis[9,10]working in the specified case has to be performed.
capacitance.

The analysis performed in this work is quite general being
applicable to a very large spectrum of frequencies and to var-2. Formulation of the problem
ious fluids. The departing point is the Navier—Stokes system.

As the domain of the fluid motion is very thin, an asymptotic In order to study the viscous damping on a planar mi-
analysis of this partial differential equation system was con- crostructure we model the air in the gap between the two
sidered. In order to include the inertia effects, important at parallel plates as a compressible Newtonian gas. We refer
large frequencies, the terms containing the time derivativesthe motion of the fluid to a Cartesian system of coordi-
of velocity were maintained in the system. Also, are con- nates whose origi®© is halfway between the plates aver-
sidered the first-order slip velocity conditions on the plates, age position th&Oy-plane parallel to the two plane surfaces
important in the case of slightly rarefied ga§&2]. The fi- (Fig. ).

nal equation for the pressure has the same form as Reynolds

equation but with different coefficients accounting for all the 2.1. Equations of the fluid motion (horizontal flow)
described effects.

The case of a planar microstructure containing a regular  The isothermal motion of the gas is described by the
web of circular holes is considered as an application. The cell Navier—Stokes system: the continuity equation,
corresponding to a certain hole (by cell we mean the influence
domain of the hole) is a regular polygon. The normal deriva- — [_p +(v- V)pi| +V.v=0 (1)
tive of the pressure along the boundary polygonal line is zero ¢ o
while the pressure has a constant value along the holes’ rim. Inand the momentum equations,
solving the resulting boundary value problem for a certain cell
the external curve will be approximated by an equivalent cir- 0 [a_v
cle enclosing the same area. The mixed Dirichlet-Neumann™ | 9
problem for an annulus in the case of Reynolds’ equation can 2)
be solved explicitly. Hence, the squeeze-film damping can be
expressed analytically. For the case of small frequencies andvherep is the densitye the isothermal speed of sounhnd
low compressibility, the resulting formula coincides with that v are perturbations of the pressure and velogitgnd are
given in[11]. Also, the holes resistance can be determined the shear and bulk viscosities agthe gravity acceleration.

+(V-V)Vi| =pg— Vp+uVV+ (u+ V(Y - v)

explicitly by solving a similar Helmholtz-type equation for In the case of simple harmonic oscillations (of frequency
the Poiseuille flow in a circular pipe. w/2m) we have
The total damping coefficient, expressed in terms of num-
ber of holes on an unit of area, has a minimum value for a , — p, et v=uyv,e o v _ —iw
. . . w s w > .
certain number of holes (optimum number of holes on a unit ot

area). Afterwards, designing formulas are given which de-
termine the geometry of the structure such that the resulting
micromechanical structure has the smallest damping for an
assigned open area.

In order to give an estimation of the error involved by
changing the external boundary curve of the cell into a circle,
a model problem for an incompressible fluid was consid-
ered. In this case, the mixed problem for the exact domain
was solved by a numerical boundary element technique. The
comparison of the two solutions (one approximate analytical
and the other one numerical) shows that for the case where
the open area ratio AR is smaller than 0.4 the precision of
the analytical formulas is very good, while for AR 0.5 the
precision is decreasing. Fig. 1. A perforated planar microstructure.
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Egs. (1) and (2)hen become
i 1
2 pot —5(V-V)po+V v, =0 @3)
oc oc
—iwpVey + p(v - VIV, = pg exp(r) — V po, + V3V,
+ (u+2)V(V - vy) (4)

It is helpful to recast these equations using dimensionless
variables. As the domain in our case is the narrow air gap
between the two plates, we will use different scales on the
x, y-directions and the-direction.

x=Lox, y=Loy, z=doz, vex=Vov,,

Voy = VOU;, Voz = gVOl)é’ DPw — Pa gor — POP/, Fig. 2. The regular web of holes on the upper plate.

0= pop, c=coc wherel’ is the mean free path of the gas molecules. Also, in
_ _ o the direction normal to the plates we have
do being the distance between plates at equilibridmg,is
a characteristic length connected to the planar domain and 1 1
A o lx,y,—= ) =0, v X,y =) =w (20)
e =do/Lo is a small parameter. The other reference vari- 2 2
ables have characteristic values. In the following, we drop the By w we denote theDzcomponent of the velocity of the

primes and remember that we are now working in dimension- qpije surface, assumed a known quantity. (The classical
less variables. To the lower orderdmve obtain the equations nonslip condition can still be obtained for = 0.)

v, ) ap At the rim of the holes the pressure is assumed to be equal
5z T K=o (5) to the atmospheric pressure. This gives the condition

vy ik ap © p=0 (11)
— vy = —— . N .

9z2 Y By onthe rimaDp of the holes. The pressure gradientis zeroina
ap direction that is normal to any line of symmetry of the planar
Fle 0 (7) microstructure. On all symmetry lines (denotedidyy ), we

¢ _ can then write a new boundary condition as
V-v—iKip=0 (8)

ap 5

where we have denoted am 0 (12)
P uVoLo K — dn [P9© Ki— wuL% We suppose that the holes (of circular formret—radius)

0= dcz) ’ = a0 o 1= 20 CS d(z) are located at the vertices of a regular system of equilateral

triangles ofi—side length Fig. 2). We will take advantage

Most approaches of the thin-film problems are neglecting of the repetitive pattern of.the perforated pla_te and defing a
completely the inertial terms. This is justified when the “Cell" as the space occupied by a hole and its surrounding
flow is steady, or slowly oscillating. However, when the Web space (the plane region where the hole is collecting the
oscillation frequency increases the inertia of the gas has aflow). The basic domain Dis defined as the plane region
significant influence on the velocity profile. Egs. (5)—(8) obtained from a cell gxcludlng tr_]e holeig. 3). The external

the terms containing the parametésand K1 include the boundary of the basic domain is a regular hexagon and the

dependence of the mechanical quantities upon frequency. inner boundary is the rim of the hole.

2.2. The boundary conditions for the gas velocity and

3. The Reynolds equation for the gas squeezing film
pressure y quati g queezing fi

By integratingEgs. (5) and (6and using the boundary
conditions(9) we obtain expressions for the horizontal com-
ponents of velocity

For including the case of slightly rarefied compressible
gas, we consider first-order slip velocity conditions at solid
boundaries instead of the usual nonslip conditidrag:

vy 1 cos(/iKz)

1 , 1 _ _
. (x’ . ii) =T 0z (x’ . ii) C W <x’ Y ii) valv, 3. 2) = (cosMK/Z) — MViK sinW/iK/2) 1)

vy 1 i 0
=32 |x,y += 9 o
o, (x y 2) ()] X <5 (13)
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Fig. 3. The influence domain (the cell) of the central hole and its circular
approximation.

by v, 2) = cosW/iKz) 4
WP DT CosWiK/2) — WNGK SinWiK/2)
i dp

wherev/i = (1+i)/+/2. Eq. (8)then becomes

Wy cos(/iKz)
iz cosW/iK/2) — MViK sin(iK/2)
i (¥p  p\ .
Xﬁ(WJFF)“K“’

Integration of this equation with respectagields a formula
for the vertical component of velocity and also an equation
for the pressure

2,
o2 T 2 +a“p = 12Mw

(15)
Here we have used the notations
o? = 12IMK;

tan(/iK/2) ~
(ViK/2)[1 — VViK tan(/iK/2)]

1)

(16)

M= g2
12

Eq. (15)is the Reynolds’ equation for solving the squeezing
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the case we have > 1 (the low compressibility cas&q.
(15) becomes Poisson’s equation:
#p  ¥p

— +—= =12M

ax? + dy2 v

Finally, the physical pressure on the membrane can be ex-
pressed by means of the relation

17)

L2 X
PYS(x v, 1) = —125 0 <— l) phys 18
PP,y 1) 2 P\ s Lo (18)
wherewPs = ¢Vow e~'“" and the functiorp satisfies the
canonical boundary value problem
*p  p

_+_

: /.
%2 3y2 inD"

+a?p =1, PlaD)y =0,

a—p |3D/ =0 (19)
on
The canonical domainD’ results from the basic domab
by means of the similarity transformation given by using di-
mensionless variables.

Inthe case where the gas is sticking to the wdlk 0) and
for smallto moderate values Kfnumbers (slowly oscillating
flow), a series expansion enables. (16)to be approximated
as

K4

+0(106)

A simple dimensional analysis reveals that for the case of the
air and of frequencies between 100 Hz and 50 kHz the value
M = 1is a good approximation.

We will define also thepressure coefficient, of the do-
main D’ as

Cp=—//ﬁ(x,y)dxdy
D/

Hence, the resulting force due to the squeeze-film damping
on a cell of the mobile plate is

K2
M=1——
10

(20)

L4
FS = 12%1\4c,,wphyS 1)

0
The damping coefficiendf a particular structure is obtained
by summing the force corresponding to all the cells of the
structure and dividing the result by velocigP"s.

At small pressures, when the molecular mean free path
is not negligible compared with the gap width, the Reynolds
equation(15) is still valid if the viscosity coefficienj is
substituted by

Meff (22)

_ 1%
1+ f(Kn)

film problem in the case of a compressible gas accounting K,, = A’'/d being the Knudsen number. For a summary of
also for the influence of inertia and gas slip on the plates. In different functionsf(K,,) used in literature to model the gas
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flow in a narrow gap and a more elaborate discussion on thisA power series expansion yields

topic the reader is directed to the pafiks].

4. The annular approximation of the basic region:
squeeze-film damping

We consider an approximation of the outer hexagonal

boundary of the basic domain by an equivalent circle having colro) = "o

the same ared{g. J). In this case the domaDis an annulus
of r1 < rpradii. The radius of the outer circle is connected
with the distancé between the holes by the relationship

rp = 0.525

resulting by the equality of areas. This approximation works
well only in the case of small inner radiug as compared
with the linear dimension of the cell. In fact, the comparison
of the analytical results obtained by this simplified model
with the data provided by the numerical solution, given in
the last section, will show the limits of the used approxima-
tion. We take as a reference lendth = r» and denoteg =
r1/rz. In this case the basic equati@l/) becomes in polar
coordinates

190 %)
-— (r—p>+a2p=12Mw forrp<r<1 (23)
ror \ or
The boundary conditions for the functigrr) are
)
plro) =0, Z5(1)=0 (24)

4.1. Squeezing viscous damping: the influence of
compressibility and inertia

The solution oEq. (23)satisfying the conditiong4) can
be written as

(1

whereJp, J1, Yo, Y1 are the Bessel functions of the first and
second kind.
We have also

w

_ Y1 () Jo(ar) — J1(a)Yo(ar)
p(r) = —

~ Ya(@)Jolaro) — Jl(Ot)Yo(Oéro)>

/ / p(r) dx dy = —127MC(a, ro)
~

1

where
C(a, ro)
1 < 20 i(e)Yaero) = i@ alere) o rz)
o2 \"a Ya(@)Jolaro) — J1(a)Yo(aro) °

2ro J1(e)Ya(aro) — Ya(a)J1(aro)
o Yi(a)Jo(aro) — J1()Yo(aro)
=1- rg + coo® + c1a* + O(®)

where
2 4
3
S L,
2 8 8
11 53 1w 5 3
=—_--0,770_ 0, %
alo) =g~ T6 " 54 3278""°
1 2
+ Z(In r0)2 - rzoln ro
Therefore,

C (e, 0) = colro) + ca(ro)e® + O(a*) (25)

The positive coefficientsg(rg), c1(ro) are plotted inFig. 4.

The first term in formulg25) corresponds to the incompress-
ible case and the next term gives the influence of compress-
ibility and inertia. Finally, the total force on the domd&in

due to squeeze-film damping can be written as

4
T
FS = 12%M0(a, ro)wPys
0

(26)

FromFig. 4itcan be seen thatthe compressibility is important
only for the case of very smath = r1/rp ratio. For an in-
compressible fluidg = 0), the resulting expression reduces

to
1
(zrg

given in[11]. In the case of small or moderate frequencies
the relationshig27) coincides withSkvor’s formula[7].

_ 1277;1,;’51
= dg

1, 1 3
g _ 2 ) wPhys (27
2nr0 8>w ( )

FC 8"0_

1.00 4

Co, C1

0754 "

0.50 4

0.25 4

0.00
0.0

Fig. 4. The functionsg(AR) andc1(AR).
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5. Viscous resistance due to the microstructure holes and has been given by Rossi[B]. The second term i&qg.
(vertical flow) (28), accounts for the effect of the oscillation frequency.
The formula(29) shows that the resistance due to the flow

In this section, we extend the previous results to account through the holes is important in the case of small diame-
for the supplementary pressure due to the resistance of theer holes (i.e. smalt1) and thick plates (i.e. largh). It is
flow through holes. As in the above formulation, the effects quite common in devices such as microaccelerometers that
of compressibility and the inertia effects will be accounted the proof mass thickness is as much as 10 times larger than
for. In order to determine the “holes resistance” we assume athe gap dimension so that the hole resistance is an important
pressurg along the upper edge of a perforation and model a component of the viscous damping.
plate hole as a pipe of 2diameter and of lengthequal to the The difficult fluid dynamic problem of the motion of the
plate thickness. In this case the only nonvanishing componentgas in the perforated micromechanical system has been de-
of velocity in the hole i, (Poiseuille flowy [14] and we can composed in two simpler flows: a horizontal (squeezing film)

write the equation flow and a vertical (Poiseuille) flow. In the case where the
thickness of the plath and the radiug; are of comparable
Av, + igvz _ 1dp dimensions a correction has to be made for the effect of the
v u 0z holes’ end. Sharipov and Selezr{é®] have shown that this

effect can be included in formu(@9) by replacing the holes’
v = u/p being the dynamic viscosity. In polar coordinates |engthh with

there results
. 3

1/ v, iw P1 hett = h + i

— | r— + —V, = ——— 8

r or v uh

On the other side, if the holes are very thin (Knudsen number
is large) the flow resistance can be determined again by the
same formula if the effective viscosity

_ ., Jo(Br) }
v.(r) = oph {1 Jo (6r1) i — g/GHbl
i1

an equation similar t¢23). Its solution, finite in the domain
r < r1 and vanishing on the pipe wall= r1 is

where 2 = iw/v. The total volume rate of flow results by ) ] ]
integration in the form stands for viscosity. Values of the functi@ry, can also be

found in[15].

oh— _ TPt {rz_ ﬂfl(ﬂrl)}
" dwph |t B Jo(Bra)

6. Optimal number of circular holes and designing

In the casedr1 < 1 we can write relationships
N ﬂplr‘f ia)r% wzrzll By addin_g the two te_rms modglling _the yiscous damping:
0" = 8uh W o 2 the squeezing mechanical damping givelkq (26) or (27)
" and the plate holes resistancesg. (29)we obtain the total

. . . force on a microstructure cell as
In the incompressible case the pressptet the rim of the

hole can be obtained by balancing this volume rate of flow gT = ps_ ph
with the volume rate of flonQ = Aw entering (or leaving)

. 4 2
the space between the microstructure plates{loe denoted _ 12'ry MC(a, ro) + 8uh —i%1)
the cell's area). Hence there results d3 ’ ry 4v
8uhA wr? 30
pr= (1_.%>w (28) 0
r v where different viscositieg’, u” have been introduced ac-

This rim pressure gives a supplementary force on the cell, counting for possible different effective viscosities on the

which may be written as horizontal and/or vertical flow and, agairm = r1/r2. We
introduce as new variablé¢$ the number of holes on a unit
Fh 8uh.A? 1 .wr% areau? and AR the area ratio (area fraction of holes)
=——F|1-i——|w (29)
n'rl 4y
. . . . . u2 7Tr2
The first term inEq. (28) which is in phase witlw, causes N = —, AR = _é =r

the pressure ikq. (29)to correspond to static Poiseuille flow 7y 7y
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For a given plate thicknes$sair gap thicknesgp, and area ra-
tio AR, itis often desirable to determine the number of holes,
N, and their dimensions in order to minimize the damping
pressure. The total damping coefficighon a unit area of

the diaphragm is
121/ C(a, ro) 1 ia)_r%
4v

3
wdyN

8" hN

NFT B
B (AR)?

w

B

The modulus of3 can be written as

2
B2 = 120|Cle rolIM| u®_ 8aph | orf|
B d3 N = (AR)2 4y
19 / //h
+ LR (21 + Re@)

3 2
d3AR

whereZ = C(a, vAR)M (1 + Ia)r1/4/v) ForN = Nopt

31|C(e, vVAR)|IM| AR ,
2hd3i" |1 +iwr?/4/v|

Nopt - (3 1)

the modulus of the damping coefficient attains its minimum
value

8 /3M/H//h
WV |Z| + Re(Z)MZ
0

|B|min = (32)

D. Homentcovschi, R.N. Miles / Sensors and Actuators A 119 (2005) 544-552

Remark 1. Itis possible that in some cases the vatug

will be too small to be realized technologically. In this case
F1opt = T'1min (r1min Deing the radius of the minimum circle
which can be “drilled”) and the formulas (100) will be used
for determining the designing variablesyp, Nopt and/gpt.
Correspondingly, the squeeze-film damping will be the dom-
inating part in the total viscous damping.

7. Optimal number of holes: a numerical estimation
of the accuracy

The results presented above are based on a circular ap-
proximation of the real polygonal external boundary of the
cell (Fig. 3). To determine the error involved in this approx-
imation a model problem for the case of an incompressible
gas was simulated numerically by using a boundary element
method. Thus, the mixed boundary value problemEqr
(17)and the real basic domaih (delimited by the inner cir-
cle ofradius and the external polygonal line) was integrated
numerically by using a complex variable boundary element
algorithm[16] and yielding finally the pressure coefficient
C, of the canonical domain. Now the force on a cell due to
squeeze-film damping can be written as

12
FS = 12’;—3MC,,wF’hys

0

Inthe case of anincompressible gas and moderate frequenciegnd, also, the viscous resistance of the Ha®), gives the

these formulas yield

NO . i(ﬁ_(AR)z_ln(AR)_E‘)ﬂuz
P 203 \ 2 8 4 8)nx
(33)
5 8v6u [ (AR (AR)?2 In(AR) 3\ ,
Blrin = (AR) (2_T_T_§)“
(34)

Denoting byl the distance (in u—units) between the centers
of two neighboring circular holes (sé€g. 3), we have the
designing relationships

u
Foopt = , lopt = 1.90520p1,
2opt p= Nopt opt 2opt
Ilopt = AR I20pt (35)

For example, in the case of a microstructure with AR.2,
do = 0.005 mm,z = 0.004 mm and neglecting the air com-
pressibility ¢ = 0) there results

Nopt = 1.220 holegmm?, 0.031mm

lopt =

riopt= 0.0032mm  Bmin = 0.11x 10 3Ns/m

force

2
Fh = 9“}14’4 (1—iﬂ)
T o 4y

The geometrical parameters AR aNdthe number of holes
on a unit of area?) are now

2 r% 2 u?

hae N ae

An analysis similar to that in the previous section gives the
optimal number of holes

AR =

2C

o P (AR)u?

num
Nopt =

and the minimum value of the principal part of the damping
coefficient

JhC,
= 16V2rpu~—= ey 2

AR\f

In Fig. 5we present a comparison of the optimum number of
holes computed by using the analytical form(88) (small
circles) and the value resulting from numerical integration

num
Bmln

(36)
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1400, T T T T T T
!
Nopt Pr.atas Y
4 o
%
1200F # % J
# *
x
1000k & * ]
*
.," R
O
800F o Skvar's formula Ny |
:“: " Numerical values ) ¥
/ ) %
600F { — Skvor's corrected formula S i
'l‘ ) *
‘ o %
400F o R,
q ;
200 O o
0 L 1 A 1 L "

08
AIR

L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9

Fjg. 5. A comparison of the optimal number of holes given by analytical
(Skvor’s) formula (circles), numerical simulation (asterisks) and modified
Skvors’ formula (continuous line).

(asterisks) in this section. It is evident that for AR0.4 the
two values are very close.

By comparing the formulag4) and (36)here results
Cp= (37)

= 30(0, VAR)
4

In Fig. 6we plot the value of the coefficieqt, given by for-
mula(37)(small circles) and the value obtained by numerical
computation (asterisks). By using the obtained numerical val-
ues, we have determined also a corrected var(e, VAR)

(the improvedskvor’s formula) to the coefficier@(0, v/AR)

in the form

C*(0, VAR) = C(0, VAR) 4+ 10~*

x (8.7 — 10AR + 26AR? — 23AR%)  (38)
-1 T
10 @
Ce ,
& 5
-
Mo
. g
® .
@
%] ®,
101 = ]
"
o Shkvor's formula i
Numerical values &
== Skvor's modified formula . %
&
.
1’ TR
1 1 1 o]
0 0.1 0.2 03 0.4 0.5 0.6 0.7
AR

Fig. 6. A comparison of the minimum total damping coefficient given by
analytical formula (circles) by numerical simulation (asterisks) and modified
analytical formula (continuous line).
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valid for 0.4 < AR < 0.75, which is also plotted iRig. 6as

a continuous line. The optimum number of holes resulting by
using the functiorC*(0, v/AR) in formula(33)is also plotted

in Fig. 5as a continuous line. It is evident that the analytical
designing formulas presented3ection écan be used for all
the area ratio values of practical interest if we consider the
coefficientC*(0, v/AR) instead ofC(0, +/AR) in the case the
area ratio AR is larger than 0.4.

8. Conclusions

The paper provides damping coefficients for the case of
regularly perforated plates valid for all frequencies and in-
cluding the effect of compressibility, inertia, and gas slip on
solid surfaces. For a regular web of circular holes, the pa-
per gives designing analytical formulas for determining the
optimal number of holes (on a unit of area) which give the
smallest total damping coefficient for an assumed open area.

The analysis in the last section (based on an incompress-
ible model) has shown that the obtained approximate analyt-
ical formulas given irBection écan be used as long as AR
0.4. Forthe incompressible fluid andilo< AR < 0.75acor-
rection term taSkvors’ formula is obtained.
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