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Viscous damping of perforated planar micromechanical structures
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Abstract

The paper gives an analytical approximation to the viscous damping coefficient due to the motion of a gas between a pair of closely spaced
fluctuating plates in which one of the plates contains a regular system of circular holes. These types of structures are important parts of many
microelectromechanical devices realized in MEMS technology as microphones, microaccelerometers, resonators, etc.

The pressure satisfies a Reynolds’ type equation with coefficients accounting for all the important effects: compressibility of the gas, inertia
and possibly slip of the gas on the plates. An analytical expression for the optimum number of circular holes which assure a minimum value
of the total damping coefficient is given. This value realizes an equilibrium between the squeeze-film damping and the viscous resistance of
t
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The paper also provides analytical design formulas to be used in the case of regular circular perforated plates.
2004 Elsevier B.V. All rights reserved.
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. Introduction

The study of the motion of a thin fluid layer squeezing
etween a vibrating plate (or proof mass) and a backplate
lectrode (or between the two vibrating plates in other ap-
lications), referred as a planar microstructure, is impor-

ant in many microelectromechanical devices such as mi-
rophones[1], microaccelerometers[2], micromechanical
witches[3], various resonators[4], and tunable microop-
ical interferometers[5]. The motion of the thin film of air
n a planar microstructure generates asqueeze-film damp-
ng that can adversely affect the dynamic response of the
ystem[6].

The excessive gas damping problem is often solved by
drilling” perforations in one of the plates. In fact, the use
f perforated plates in surface-micromachined planar mi-
rostructures has a double role: it reduces the squeeze-film
amping effect and enhances the etching of underlying sacri-
cial layers in the microfabrication process. Thus, the perfo-

∗ Corresponding author. Permanent address: University Politechnica
f Bucharest, Department of Mathematics, Splaiul Independentei #313,
O-77206 Bucharest, Romania.
E-mail address:homentco@binghamton.edu (R.N. Miles).

rations are compatible with the thin film processing and
very little to the manufacturing cost.

While the squeeze-film damping is reduced by inco
rating holes in the backplate, the motion of the air within
backplate holes gives a new viscous resistance which
to the squeeze-film damping. Previous work devoted to
viscous damping in planar microstructures has consider
many cases, only the squeeze-film damping. Thus,Škvor[7]
using a simplified hydraulic model succeeded in obtainin
analytical formula for evaluating the squeeze-film dam
in some acoustical devices.Škvor’s result is applicable to in
compressible fluids and neglects any added damping d
the flow through the holes. The viscous hole resistance e
was considered by Rossi[8] in some acoustical application
Recently, Veijola and Mattila[9] and Bao et al.[10] devel-
oped damping models incorporating the holes resistan
the linearized Reynolds equation.

These two viscous effects, namely the squeeze-film d
ing due to the horizontal motion of the air between the p
and the resistance due to the vertical motion of air throug
holes are not independent. In order to decrease the squ
film damping we have to “drill” more and more holes but e
new hole adds its resistance to the total damping. Thus, w
pect the existence of an optimum number of perforations
924-4247/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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minimizes the viscous damping and corresponds to an equi-
librium between the two components of the viscous damp-
ing. For the case of incompressible fluids such an analysis
was performed in[11]. In the present study, we extend some
of these results to account for the effects of compressibility,
inertia, and the gas slip on surfaces. A primary aim of this
paper is to present practical formulae that are more widely
applicable than previous results and, in electrically driven or
sensed devices, have the minimal gas damping for an assumed
capacitance.

The analysis performed in this work is quite general being
applicable to a very large spectrum of frequencies and to var-
ious fluids. The departing point is the Navier–Stokes system.
As the domain of the fluid motion is very thin, an asymptotic
analysis of this partial differential equation system was con-
sidered. In order to include the inertia effects, important at
large frequencies, the terms containing the time derivatives
of velocity were maintained in the system. Also, are con-
sidered the first-order slip velocity conditions on the plates,
important in the case of slightly rarefied gases[12]. The fi-
nal equation for the pressure has the same form as Reynolds
equation but with different coefficients accounting for all the
described effects.

The case of a planar microstructure containing a regular
web of circular holes is considered as an application. The cell
corresponding to a certain hole (by cell we mean the influence
d riva-
t zero
w im. In
s cell
t t cir-
c ann
p can
b n be
e s and
l hat
g ined
e for
t

um-
b or a
c unit
a de-
t lting
m or an
a

by
c rcle,
a sid-
e ain
w . The
c tical
a here
t n of
t
p

As a byproduct of this calculation a correction term for the
Škvor’s analytical formula for the cases 0.4 < AR < 0.75
was obtained.

For a finite plate the real damping force depends on the
plates’ boundary which is decreasing the pressure. Hence,
the damping coefficient resulting by the present analysis is
conservative; for a better approximation of this coefficient,
corresponding to a particular structure, a more elaborate anal-
ysis[9,10]working in the specified case has to be performed.

2. Formulation of the problem

In order to study the viscous damping on a planar mi-
crostructure we model the air in the gap between the two
parallel plates as a compressible Newtonian gas. We refer
the motion of the fluid to a Cartesian system of coordi-
nates whose originO is halfway between the plates aver-
age position thexOy-plane parallel to the two plane surfaces
(Fig. 1).

2.1. Equations of the fluid motion (horizontal flow)

The isothermal motion of the gas is described by the
Navier–Stokes system: the continuity equation,[ ]
a

ρ

w
v
t n.

ncy
ω

p

omain of the hole) is a regular polygon. The normal de
ive of the pressure along the boundary polygonal line is
hile the pressure has a constant value along the holes’ r
olving the resulting boundary value problem for a certain
he external curve will be approximated by an equivalen
le enclosing the same area. The mixed Dirichlet–Neum
roblem for an annulus in the case of Reynolds’ equation
e solved explicitly. Hence, the squeeze-film damping ca
xpressed analytically. For the case of small frequencie

ow compressibility, the resulting formula coincides with t
iven in [11]. Also, the holes resistance can be determ
xplicitly by solving a similar Helmholtz-type equation
he Poiseuille flow in a circular pipe.

The total damping coefficient, expressed in terms of n
er of holes on an unit of area, has a minimum value f
ertain number of holes (optimum number of holes on a
rea). Afterwards, designing formulas are given which

ermine the geometry of the structure such that the resu
icromechanical structure has the smallest damping f
ssigned open area.

In order to give an estimation of the error involved
hanging the external boundary curve of the cell into a ci
model problem for an incompressible fluid was con

red. In this case, the mixed problem for the exact dom
as solved by a numerical boundary element technique
omparison of the two solutions (one approximate analy
nd the other one numerical) shows that for the case w

he open area ratio AR is smaller than 0.4 the precisio
he analytical formulas is very good, while for AR> 0.5 the
recision is decreasing.
1

ρc2

∂p

∂t
+ (v · ∇)p + ∇ · v = 0 (1)

nd the momentum equations,[
∂v
∂t

+ (v · ∇)v
]

= ρg− ∇p+ µ∇2v + (µ+ λ)∇(∇ · v)

(2)

hereρ is the density,c the isothermal speed of sound,pand
are perturbations of the pressure and velocity,µ andλ are

he shear and bulk viscosities andg the gravity acceleratio
In the case of simple harmonic oscillations (of freque
/2π) we have

= pω e−iωt, v = vω e−iωt,
∂ · v
∂t

= −iω.

Fig. 1. A perforated planar microstructure.
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Eqs. (1) and (2)then become

− iω

ρc2
pω + 1

ρc2
(v · ∇)pω + ∇ · vω = 0 (3)

−iωρvω + ρ(v · ∇)vω = ρg exp(iωt) − ∇pω + µ∇2vω

+ (µ+ λ)∇(∇ · vω) (4)

It is helpful to recast these equations using dimensionless
variables. As the domain in our case is the narrow air gap
between the two plates, we will use different scales on the
x, y-directions and thez-direction.

x = L0x
′, y = L0y

′, z = d0z
′, vωx = V0v

′
x,

vωy = V0v
′
y, vωz = εV0v

′
z, pω − pa eiωt = P0p

′,

ρ = ρ0ρ
′, c = c0c

′

d0 being the distance between plates at equilibrium,L0 is
a characteristic length connected to the planar domain and
ε = d0/L0 is a small parameter. The other reference vari-
ables have characteristic values. In the following, we drop the
primes and remember that we are now working in dimension-
less variables. To the lower order inεwe obtain the equations

∂2vx

∂z2
+ iK2vx = ∂p

∂x
(5)

ting
the
he
as a

y.

ible
olid

Fig. 2. The regular web of holes on the upper plate.

whereλ′ is the mean free path of the gas molecules. Also, in
the direction normal to the plates we have

vz

(
x, y,−1

2

)
= 0, vz

(
x, y,

1

2

)
= w (10)

By w we denote theOz-component of the velocity of the
mobile surface, assumed a known quantity. (The classical
nonslip condition can still be obtained forλ′ = 0.)

At the rim of the holes the pressure is assumed to be equal
to the atmospheric pressure. This gives the condition

p = 0 (11)

on the rim∂DD of the holes. The pressure gradient is zero in a
direction that is normal to any line of symmetry of the planar
microstructure. On all symmetry lines (denoted by∂DN ), we
can then write a new boundary condition as

∂p

∂n
= 0 (12)

We suppose that the holes (of circular form ofr1—radius)
are located at the vertices of a regular system of equilateral
triangles ofl—side length (Fig. 2). We will take advantage
of the repetitive pattern of the perforated plate and define a
“cell” as the space occupied by a hole and its surrounding
web space (the plane region where the hole is collecting the
fl on
o l
b d the
i

3

ry
c m-
p

v

ow). The basic domain Dis defined as the plane regi
btained from a cell excluding the hole (Fig. 3). The externa
oundary of the basic domain is a regular hexagon an

nner boundary is the rim of the hole.

. The Reynolds equation for the gas squeezing film

By integratingEqs. (5) and (6)and using the bounda
onditions(9) we obtain expressions for the horizontal co
onents of velocity

x(x, y, z) =
(

cos(
√

iKz)

cos(
√

iK/2) − λ′√iK sin(
√

iK/2)
− 1

)

× i

K2

∂p

∂x
(13)
∂2vy

∂z2
+ iK2vy = ∂p

∂y
(6)

∂p

∂z
= 0 (7)

∇ · v− iK1p = 0 (8)

where we have denoted

P0 = µV0L0

d2
0

, K = d0

√
ρ0ω

µ
, K1 = ωµL2

0

ρ0c
2
0d

2
0

Most approaches of the thin-film problems are neglec
completely the inertial terms. This is justified when
flow is steady, or slowly oscillating. However, when t
oscillation frequency increases the inertia of the gas h
significant influence on the velocity profile. InEqs. (5)–(8)
the terms containing the parametersK andK1 include the
dependence of the mechanical quantities upon frequenc

2.2. The boundary conditions for the gas velocity and
pressure

For including the case of slightly rarefied compress
gas, we consider first-order slip velocity conditions at s
boundaries instead of the usual nonslip conditions[12]:

vx

(
x, y,±1

2

)
= ∓λ′ ∂vx

∂z

(
x, y,±1

2

)
, vy

(
x, y,±1

2

)
= ∓λ′ ∂vy

∂z

(
x, y,±1

2

)
(9)
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Fig. 3. The influence domain (the cell) of the central hole and its circular
approximation.

vy(x, y, z) =
(

cos(
√

iKz)

cos(
√

iK/2) − λ′√iK sin(
√

iK/2)
− 1

)

× i

K2

∂p

∂y
(14)

where
√

i = (1 + i)/
√

2. Eq. (8)then becomes

∂vz

∂z
=
(

1 − cos(
√

iKz)

cos(
√

iK/2) − λ′√iK sin(
√

iK/2)

)

× i

K2

(
∂2p

∂x2
+ ∂2p

∂y2

)
+ iK1p

Integration of this equation with respect tozyields a formula
for the vertical component of velocity and also an equation
for the pressure

∂2p

∂x2
+ ∂2p

∂y2
+ α2p = 12Mw (15)

Here we have used the notations

α2 = 12iMK1

M

E ing
fi nting
a s. In

the case we havec0 � 1 (the low compressibility case)Eq.
(15)becomes Poisson’s equation:

∂2p

∂x2
+ ∂2p

∂y2
= 12Mw (17)

Finally, the physical pressure on the membrane can be ex-
pressed by means of the relation

pphys(x, y, t) = −12
µL2

0

d3
0

Mp̂

(
x

L0
,
y

L0

)
wphys (18)

wherewphys = εV0we−iωt and the function̂p satisfies the
canonical boundary value problem

∂2p̂

∂x2
+ ∂2p̂

∂y2
+ α2p̂ = 1, inD′ : p̂|∂D′

D = 0,

∂p̂

∂n
|∂D′

N = 0 (19)

The canonical domainD′ results from the basic domainD
by means of the similarity transformation given by using di-
mensionless variables.

In the case where the gas is sticking to the wall (λ′ = 0) and
for small to moderate values ofK-numbers (slowly oscillating
flow), a series expansion enablesEq. (16)to be approximated
as

M

A f the
a alue
M

m

C

H ping
o

F

T ed
b the
s

th
i olds
e
s

µ

K y of
d as
= i

12
K2

(
tan(

√
iK/2)

(
√

iK/2)[1 − λ′√iK tan(
√

iK/2)]
− 1

)−1

.

(16)

q. (15)is the Reynolds’ equation for solving the squeez
lm problem in the case of a compressible gas accou
lso for the influence of inertia and gas slip on the plate
= 1 − iK2

10
+ O

(
K4

100

)
simple dimensional analysis reveals that for the case o

ir and of frequencies between 100 Hz and 50 kHz the v
= 1 is a good approximation.
We will define also thepressure coefficientCp of the do-

ainD′ as

p = −
∫∫
D′

p̂(x, y) dx dy (20)

ence, the resulting force due to the squeeze-film dam
n a cell of the mobile plate is

s = 12
µL4

0

d3
0

MCpw
phys (21)

hedamping coefficientof a particular structure is obtain
y summing the force corresponding to all the cells of
tructure and dividing the result by velocitywphys.

At small pressures, when the molecular mean free paλ′
s not negligible compared with the gap width, the Reyn
quation(15) is still valid if the viscosity coefficientµ is
ubstituted by

eff = µ

1 + f (Kn)
(22)

n = λ′/d being the Knudsen number. For a summar
ifferent functionsf (Kn) used in literature to model the g
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flow in a narrow gap and a more elaborate discussion on this
topic the reader is directed to the paper[13].

4. The annular approximation of the basic region:
squeeze-film damping

We consider an approximation of the outer hexagonal
boundary of the basic domain by an equivalent circle having
the same area (Fig. 3). In this case the domainD is an annulus
of r1 < r2 radii. The radius of the outer circler2 is connected
with the distancel between the holes by the relationship

r2 = 0.525l

resulting by the equality of areas. This approximation works
well only in the case of small inner radiusr1 as compared
with the linear dimension of the cell. In fact, the comparison
of the analytical results obtained by this simplified model
with the data provided by the numerical solution, given in
the last section, will show the limits of the used approxima-
tion. We take as a reference lengthL0 = r2 and denoter0 =
r1/r2. In this case the basic equation(17) becomes in polar
coordinates

1
( )

T

p

4
c

b

p

w nd
s

∫
D

w

C

A power series expansion yields

2r0
α

J1(α)Y1(αr0) − Y1(α)J1(αr0)

Y1(α)J0(αr0) − J1(α)Y0(αr0)

= 1 − r2
0 + c0α

2 + c1α
4 + O(α6)

where

c0(r0) = r2
0

2
− 3

8
− r4

0

8
− 1

2
ln r0

c1(r0) = 11

64
− 5r2

0

16
+ 11r4

0

64
− r6

0

32
+ 3

8
ln r0

+ 1

4
(ln r0)2 − r2

0

4
ln r0

Therefore,

C(α, r0) = c0(r0) + c1(r0)α2 + O(α4) (25)

The positive coefficientsc0(r0), c1(r0) are plotted inFig. 4.
The first term in formula(25)corresponds to the incompress-
ible case and the next term gives the influence of compress-
ibility and inertia. Finally, the total force on the domainD
due to squeeze-film damping can be written as

nt

es

ies
r

∂

∂r
r
∂p

∂r
+ α2p = 12Mw for r0 < r < 1 (23)

he boundary conditions for the functionp(r) are

(r0) = 0,
∂p

∂r
(1) = 0 (24)

.1. Squeezing viscous damping: the influence of
ompressibility and inertia

The solution ofEq. (23)satisfying the conditions(24)can
e written as

(r) = w

iK1

(
1 − Y1(α)J0(αr) − J1(α)Y0(αr)

Y1(α)J0(αr0) − J1(α)Y0(αr0)

)

hereJ0, J1, Y0, Y1 are the Bessel functions of the first a
econd kind.

We have also∫
′
1

p(r) dx dy = −12πMC(α, r0)

here

(α, r0)

= 1

α2

(
2r0
α

J1(α)Y1(αr0) − Y1(α)J1(αr0)

Y1(α)J0(αr0) − J1(α)Y0(αr0)
− 1 + r2

0

)

Fs = 12
πµr4

2

d3
0

MC(α, r0)wphys (26)

FromFig. 4it can be seen that the compressibility is importa
only for the case of very smallr0 = r1/r2 ratio. For an in-
compressible fluid (α = 0), the resulting expression reduc
to

Fc = 12πµr4
2

d3
0

M

(
1

2
r2
0 − 1

8
r4
0 − 1

2
ln r0 − 3

8

)
wphys (27)

given in [11]. In the case of small or moderate frequenc
the relationship(27)coincides withŠkvor’s formula[7].

Fig. 4. The functionsc0(AR) andc1(AR).
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5. Viscous resistance due to the microstructure holes
(vertical flow)

In this section, we extend the previous results to account
for the supplementary pressure due to the resistance of the
flow through holes. As in the above formulation, the effects
of compressibility and the inertia effects will be accounted
for. In order to determine the “holes resistance” we assume a
pressurep1 along the upper edge of a perforation and model a
plate hole as a pipe of 2r1 diameter and of lengthhequal to the
plate thickness. In this case the only nonvanishing component
of velocity in the hole isvz (Poiseuille flow) [14] and we can
write the equation

'vz + iω

ν
vz = 1

µ

∂p

∂z

ν = µ/ρ being the dynamic viscosity. In polar coordinates
there results

1

r

(
r
∂vz

∂r

)
+ iω

ν
vz = − p1

µh

an equation similar to(23). Its solution, finite in the domain
r < r1 and vanishing on the pipe wallr = r1 is

v

{ }
w by
i

Q

I

Q

I
h flow
w )
t
t

p

T cell,
w

F

T s
t w

and has been given by Rossi in[8]. The second term inEq.
(28), accounts for the effect of the oscillation frequency.

The formula(29)shows that the resistance due to the flow
through the holes is important in the case of small diame-
ter holes (i.e. smallr1) and thick plates (i.e. largeh). It is
quite common in devices such as microaccelerometers that
the proof mass thickness is as much as 10 times larger than
the gap dimension so that the hole resistance is an important
component of the viscous damping.

The difficult fluid dynamic problem of the motion of the
gas in the perforated micromechanical system has been de-
composed in two simpler flows: a horizontal (squeezing film)
flow and a vertical (Poiseuille) flow. In the case where the
thickness of the plateh and the radiusr1 are of comparable
dimensions a correction has to be made for the effect of the
holes’ end. Sharipov and Seleznev[15] have shown that this
effect can be included in formula(29)by replacing the holes’
lengthhwith

heff = h+ 3πr1
8

On the other side, if the holes are very thin (Knudsen number
is large) the flow resistance can be determined again by the
same formula if the effective viscosity

µ

s e
f

6
r

ing:
t )
a l
f

F

w c-
c the
h
i it
a

N

z(r) = − p1

iωρh
1 − J0 (βr)

J0 (βr1)

hereβ2 = iω/ν. The total volume rate of flow results
ntegration in the form

h = − πp1

iωρh

{
r2
1 − 2r1

β

J1 (βr1)

J0(βr1)

}
n the caseβr1 < 1 we can write

h = πp1r
4
1

8µh

{
1 + iωr2

1

4ν
+ O

(
ω2r4

1

ν2

)}

n the incompressible case the pressurep1 at the rim of the
ole can be obtained by balancing this volume rate of
ith the volume rate of flowQ = Aw entering (or leaving

he space between the microstructure plates (byAwe denoted
he cell’s area). Hence there results

1 = 8µhA

πr4
1

(
1 − i

ωr2
1

4ν

)
w (28)

his rim pressure gives a supplementary force on the
hich may be written as

h = 8µhA2

πr4
1

(
1 − i

ωr2
1

4ν

)
w (29)

he first term inEq. (28), which is in phase withw, cause
he pressure inEq. (29)to correspond to static Poiseuille flo
eff =
√
πµr1

8λGtb

tands for viscosity. Values of the functionGtb can also b
ound in[15].

. Optimal number of circular holes and designing
elationships

By adding the two terms modelling the viscous damp
he squeezing mechanical damping given inEq. (26) or (27
nd the plate holes resistance inEq. (29)we obtain the tota

orce on a microstructure cell as

T ≡ Fs + Fh

=
[

12πµ′r4
2

d3
0

MC(α, r0) + 8πµ′′h
r4
0

(
1 − i

ωr2
1

4ν

)]
w

(30)

here different viscositiesµ′, µ′′ have been introduced a
ounting for possible different effective viscosities on
orizontal and/or vertical flow and, again,r0 = r1/r2. We

ntroduce as new variablesN the number of holes on a un
reau2 and AR the area ratio (area fraction of holes)

= u2

πr2
2

, AR = πr2
1

πr2
2

= r2
0
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For a given plate thicknessh, air gap thicknessd0, and area ra-
tio AR, it is often desirable to determine the number of holes,
N, and their dimensions in order to minimize the damping
pressure. The total damping coefficientB on a unit area of
the diaphragm is

B ≡ NFT

w
= 12µ′C(α, r0)

πd3
0N

Mu4 + 8πµ′′hN
(AR)2

(
1 − i

ωr2
1

4ν

)

The modulus ofB can be written as

|B|2 =
(

12µ′|C(α, r0)||M|
πd3

0

u4

N
− 8πµ′′h

(AR)2

∣∣∣∣∣1 + i
ωr2

1

4ν

∣∣∣∣∣N
)2

+ 192µ′µ′′h
d3

0AR2
u4(|Z| + Re(Z))

whereZ = C(α,
√

AR)M(1 + iωr2
1/4/ν). ForN = Nopt

Nopt =
√√√√ 3µ′|C(α,

√
AR)||M|

2hd3
0µ

′′ ∣∣1 + iωr2
1/4/ν

∣∣ AR

π
u2 (31)

the modulus of the damping coefficient attains its minimum
value

|
√

I encies
t

N

|

D ters
o e
d

F
d m-
p

Remark 1. It is possible that in some cases the valuer1opt
will be too small to be realized technologically. In this case
r1opt = r1min (r1min being the radius of the minimum circle
which can be “drilled”) and the formulas (100) will be used
for determining the designing variablesr2opt, Nopt and lopt.
Correspondingly, the squeeze-film damping will be the dom-
inating part in the total viscous damping.

7. Optimal number of holes: a numerical estimation
of the accuracy

The results presented above are based on a circular ap-
proximation of the real polygonal external boundary of the
cell (Fig. 3). To determine the error involved in this approx-
imation a model problem for the case of an incompressible
gas was simulated numerically by using a boundary element
method. Thus, the mixed boundary value problem forEq.
(17)and the real basic domainD (delimited by the inner cir-
cle of radiusr1 and the external polygonal line) was integrated
numerically by using a complex variable boundary element
algorithm[16] and yielding finally the pressure coefficient
Cp of the canonical domain. Now the force on a cell due to
squeeze-film damping can be written as

F
µl2

a
f

F

T s
o

A

A the
o

N

a ing
c

B

I r of
h
c tion
B|min = 8 3µ′µ′′h
(AR)d3/2

0

√
|Z| + Re(Z)u2 (32)

n the case of an incompressible gas and moderate frequ
hese formulas yield

0
opt =

√
3

2hd3
0

(
AR

2
− (AR)2
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− ln(AR)
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)
AR

π
u2

(33)
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(AR)
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h

d3
0

(
AR

2
− (AR)2

8
− ln(AR)

4
− 3

8

)
u2

(34)

enoting byl the distance (in u—units) between the cen
f two neighboring circular holes (seeFig. 3), we have th
esigning relationships

r2opt = u√
πNopt

, lopt = 1.905r2opt,

r1opt = AR · r2opt (35)

or example, in the case of a microstructure with AR= 0.2,
0 = 0.005 mm,h = 0.004 mm and neglecting the air co
ressibility (α = 0) there results

Nopt = 1.220 holes/mm2, lopt = 0.031 mm,

r1opt = 0.0032 mm, Bmin = 0.11× 10−3 N s/m
s = 12
d3

0

MCpw
phys

nd, also, the viscous resistance of the hole(29), gives the
orce

h = 6

π

µhl4

r4
1

(
1 − i

ωr2
1

4ν

)

he geometrical parameters AR andN (the number of hole
n a unit of areau2) are now

R = 2π√
3

r2
1

l2
, N = 2√

3

u2

l2

n analysis similar to that in the previous section gives
ptimal number of holes

num
opt =

√
2Cp

πhd3
0

(AR)u2

nd the minimum value of the principal part of the damp
oefficient

num
min = 16

√
2πµ

√
hCp

AR
√
d3

0

u2 (36)

n Fig. 5we present a comparison of the optimum numbe
oles computed by using the analytical formula(33) (small
ircles) and the value resulting from numerical integra
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Fig. 5. A comparison of the optimal number of holes given by analytical
(Škvor’s) formula (circles), numerical simulation (asterisks) and modified
Škvors’ formula (continuous line).

(asterisks) in this section. It is evident that for AR< 0.4 the
two values are very close.

By comparing the formulas(34) and (36)there results

Cp = 3

4π
C(0,

√
AR) (37)

In Fig. 6we plot the value of the coefficientCp given by for-
mula(37)(small circles) and the value obtained by numerical
computation (asterisks). By using the obtained numerical val-
ues, we have determined also a corrected valueC∗(0,

√
AR)

(the improveďSkvor’s formula) to the coefficientC(0,
√

AR)
in the form

C∗(0,
√

AR) = C(0,
√

AR) + 10−4

× (8.7 − 10AR+ 26AR2 − 23AR3) (38)

F by
a ified
a

valid for 0.4 < AR < 0.75, which is also plotted inFig. 6as
a continuous line. The optimum number of holes resulting by
using the functionC∗(0,

√
AR) in formula(33)is also plotted

in Fig. 5as a continuous line. It is evident that the analytical
designing formulas presented inSection 6can be used for all
the area ratio values of practical interest if we consider the
coefficientC∗(0,

√
AR) instead ofC(0,

√
AR) in the case the

area ratio AR is larger than 0.4.

8. Conclusions

The paper provides damping coefficients for the case of
regularly perforated plates valid for all frequencies and in-
cluding the effect of compressibility, inertia, and gas slip on
solid surfaces. For a regular web of circular holes, the pa-
per gives designing analytical formulas for determining the
optimal number of holes (on a unit of area) which give the
smallest total damping coefficient for an assumed open area.

The analysis in the last section (based on an incompress-
ible model) has shown that the obtained approximate analyt-
ical formulas given inSection 6can be used as long as AR<
0.4. For the incompressible fluid and 0.4 < AR < 0.75 a cor-
rection term tǒSkvors’ formula is obtained.
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ig. 6. A comparison of the minimum total damping coefficient given
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